Outlier Detection for Monitoring Data Using Stacked Autoencoder
نویسندگان
چکیده
منابع مشابه
Outlier Detection with Autoencoder Ensembles
In this paper, we introduce autoencoder ensembles for unsupervised outlier detection. One problem with neural networks is that they are sensitive to noise and often require large data sets to work robustly, while increasing data size makes them slow. As a result, there are only a few existing works in the literature on the use of neural networks in outlier detection. This paper shows that neura...
متن کاملStacked Robust Autoencoder for Classification
In this work we propose an lp-norm data fidelity constraint for training the autoencoder. Usually the Euclidean distance is used for this purpose; we generalize the l2-norm to the lp-norm; smaller values of p make the problem robust to outliers. The ensuing optimization problem is solved using the Augmented Lagrangian approach. The proposed lp -norm Autoencoder has been tested on benchmark deep...
متن کامل1000 Fps Highly Accurate Eye Detection with Stacked Denoising Autoencoder
Eye detection is an important step for a range of applications such as iris and face recognition. For eye detection in practice, speed is as equally important as accuracy. In this paper, we propose a super-fast (1000 fps on a general PC) eye detection method based on the label map of the raw image without face detection. We firstly produce the label map of a raw image according to the coordinat...
متن کاملRelational Stacked Denoising Autoencoder for Tag Recommendation
Tag recommendation has become one of the most important ways of organizing and indexing online resources like articles, movies, and music. Since tagging information is usually very sparse, effective learning of the content representation for these resources is crucial to accurate tag recommendation. Recently, models proposed for tag recommendation, such as collaborative topic regression and its...
متن کاملmetrics for the detection of changed buildings in 3d old vector maps using als data (case study: isfahan city)
هدف از این تحقیق، ارزیابی و بهبود متریک های موجود جهت تایید صحت نقشه های قدیمی سه بعدی برداری با استفاده از ابر نقطه حاصل از لیزر اسکن جدید شهر اصفهان می باشد . بنابراین ابر نقطه حاصل از لیزر اسکنر با چگالی حدودا سه نقطه در هر متر مربع جهت شناسایی عوارض تغییر کرده در نقشه های قدیمی سه بعدی استفاده شده است. تمرکز ما در این تحقیق بر روی ساختمان به عنوان یکی از اصلی ترین عارضه های شهری می باشد. من...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2956494